Special Session on Ultra-Reliable and Mission Critical Communication

We have organized a special session on Ultra-Reliable and Mission Critical Communications, together with Frank Schaich (Nokia), Berna Sayrac (Orange) and Salah Eddine Elayoubi (Orange). This special session was created within the context of the H2020-5GPPP project FANTASTIC-5G and it was held at the 2016 edition of the European Conference on Networks and Communications (EUCNC) in Athens, Greece.

We had four presentations, which covered four essential aspects of Ultra-Reliable and Mission Critical Communications. We would like to thank the presenters and attendees for the very interesting discussions, from which we could see that this topic is extremely relevant for both the industry and academy and will have an impact on 5G systems.

Petar and Nuno


These presentations where:

Presentation: Security on a 5G setting”, by Gerhard Wunder (FU-Berlin)

Abstract: MCC requirements such as high reliability, low latency etc. affect also security (and safety) procedures. In this talk we highlight some challenges of MCC from a 5G security perspective and discuss physical layer security (PHYSEC) as a potential remedy. To counter both passive eavesdropper and active radio hacking systems, that operate at the radio interface of wireless networks, to enable efficient, scalable key pre-distribution and authentication, and to enable much faster key establishment / authentication / attack detection procedures, PHYSEC has emerged as a promising approach, in complement of classical ciphering. PHYSEC strengthens the security of wireless communications by catching and exploiting the intrinsic randomness of the radio propagation, which avoids the use of pre-shared keys and guarantees full secrecy independently of the adverse computing capabilities. In this context we discuss several interesting new “fast” security procedures on radio level such as secret key generation “on the fly”, secrecy coding, secure pairing, etc.

Presentation: “Ultra-Reliable and Low-Latency 5G Communication”, Osman Yilmaz ( Ericsson), Manuscript

Abstract: Machine-to-machine communication, M2M, will make up a large portion of the new types of services and use cases that the fifth generation (5G) systems will address. On the one hand, 5G will connect a large number of low-cost and low-energy devices in the context of the Internet of things; on the other hand it will enable critical machine type communication use cases, such as smart factory, automotive, energy, and e-health – which require communication with very high reliability and availability, as well as very low end-to-end latency. In this paper, we will discuss the requirements, enablers and challenges to support these emerging mission-critical 5G use cases.

Presentation: “Code Design for Short Blocks: A Survey”, Gianluigi Liva (DLR), Manuscript

Abstract: “The design of block codes for short information blocks (e.g., a thousand or less information bits) is an open research problem which is gaining relevance thanks to emerging applications in wireless communication networks. In this work, we review some of the most recent code constructions targeting the short block regime, and we compare then with both finite length performance bounds and classical error correction coding schemes. We will see how it is possible to effectively approach the theoretical bounds, with different performance vs. decoding complexity trade-offs.”

Presentation: “Achieving low-latency communication in future wireless networks: the 5G NORMA approach”, Alessandro Colazzo (AZCOM), Manuscript

Abstract: “The end-to-end network latency is generally considered by the 5G community a key requirement for future wireless networks, enabling new applications by means of end-to-end figures up to a few ms, which is a target that cannot be achieved by the current 4G technology. 5G Novel Radio Multiservice adaptive network Architecture (5G NORMA) project aims at providing a new network architecture design able to cope with the diverse and stringent 5G KPIs, including network latency. This paper describes the low latency issue from a network architecture perspective, starting from the 3GPP state-of-the-art and then describing the 5G NORMA novelties.”